
WIP/-Engineering-Progression

1

•
•
•
•

This is a work-in-progress draft version of a framework for the various engineering
levels of the Rail Europe B2C (formerly Loco2) Tech Team. In particular, the salary
ranges listed are provided as a rough guide and have not been validated by HR, and
should not be considered contractual or binding in any way.

Engineering Progression

Historically, Loco2 primarily hired Senior Software Engineers. As all engineers were
at roughly the same level and expected to remain at that level, no advancement
was possible or necessary. As the team has grown, we've hired earlier career
engineers. Our Senior Engineers have expanded their responsibilities and skill sets.
In order to support everyone's career growth, we'd like to introduce a clear
progression, indicating responsibilities and required skills for several different
levels to support advancement and recognition of exceptional accomplishments.

How to use this framework

Each level is cumulative—for example, Intermediate Software Engineers are
expected to possess and demonstrate all of the skills listed for lower levels. Thus,
the skills listed will be progressively more brief as you look at each level, for the
sake of brevity and to reduce duplication. The levels begin with Software Engineer I
(an entry-level position), and currently end with Technical Lead & Principal
Software Engineer. These two roles (Technical Lead and Principal Engineer) are at
the same level, but have different areas of focus to reflect the specialisation
necessary to attain mastery at an advanced level. Skills are divided into four main
areas:

Technical
Communication
Delivery
Leadership

In each area, some of the skills and responsibilities listed may be required; these
are indicated with bold text. Others are elective (optional). In order to be eligible
for promotion to the next level, an engineer should have demonstrated all of the

2

required competencies at the next level for 3-6 months, as well as at least 50% of
optional competencies. Many of the skills listed include detailed examples as
italicised sub-points, to make the expectations more explicit.

When considering whether an engineer should be promoted, ask "Does this person
demonstrate effective performance for an engineer at the higher level?" If the
answer is "yes", a promotion should be granted. If the answer is "no" but the
engineer would like to be promoted, their manager should provide a detailed
coaching plan to help fill in any competency gaps in time for the next review cycle.

Expected years of experience are provided as a rough guideline, but there is no
required minimum. Engineers should be assessed primarily on their competencies
and demonstrated skills, not on prior experience. There is no "up or out"
expectation that engineers will progress beyond a given level—if you're happy to
remain at a Senior Software Engineer level indefinitely, that's perfectly fine.
However, we hope that for those engineers who would like to grow their skills in
certain areas and to accept greater responsibility, this progression will provide a
sufficient framework for advancement with commensurate increase in salary.

Level Summary

Level Description Expected Experience Salary

Software Engineer I Apprentice 0-1 years (entry level) £30-35k

Software Engineer II Junior 1-3 years 35-45k

Intermediate Software
Engineer I

Mid-level 2-5 years 40-50k

Intermediate Software
Engineer II

Mid-level 3-7 years 45-66k

Senior Software
Engineer I

Senior 5+ 62-70k

Senior Software
Engineer II

Senior 5+ 65-80k

Technical Lead Senior + Technical
Leadership, with a
focus on mentorship,
delivery, value

7+ 75-95k (may include
bonus)

Principal Software
Engineer

Senior + Technical
Leadership, with a

7+ 75-95k (may include
bonus)

3

•

•
•

•
•
•

•

•

•

•

•
•
•

•
•

•

focus on quality,
architecture, strategy

Software Engineer I

A Software Engineer writes production-quality code to solve problems and build
small enhancements to the new Rail Europe B2C/formerly Loco2 application, with
the support and mentorship of more senior team members. A Software Engineer is
expected to take a proactive role in their learning progression, reaching out to more
senior teammates for mentorship and support when needed to understand how to
complete challenging tasks or work through blockers.

Skills
Technical

Responsible for maintaining your computer and local development
environment

Keeps local tools up to date
Follow instructions to get the Rail Europe application running locally

Use version control to manage development workflow
Follow the dev workflow for creating a pull request and submitting it for review
Commits are atomic, easy to understand, and don't contain unrelated
changes
You rebase and amend commits to spare your reviewers from sifting through
many "fix typo" commits

Use code to fulfil technical tasks (of up to 5 story points, or 1-2 weeks of
work) from the prioritised backlog

Take a ticket from the backlog and makes a necessary change to content or
style
Are assigned a ticket from the backlog and conduct a technical investigation
or build a proof-of-concept to illustrate the proposed solution

Maintain appropriate test coverage
Fix or update tests when changing existing code
Write a new test to cover a bug fix

Reuse existing code patterns or components
Follow our guidelines for coding style when adding code or making changes to
existing code
Use idiomatic Ruby when writing new code

4

•
•

•
•

•
•

•

•
•

•
•
•

•
•

•
•
•

•

•

•

•
•

•
•
•

Reuse available React components when working in the SPA
Use continuous delivery or build pipelines for automation

See your build is failing and finds out why using the Travis or Percy interface
Restart broken builds after investigating why a failure happened

Use observability/monitoring tools (but don't necessarily implement monitoring)
Librato, New Relic, Papertrail, Honeybadger

Communication
Review pull requests as a secondary reviewer, and ask questions about what
you don't understand

You find a typo in a method name and make a suggestion to fix it
The work is good but your colleague has neglected to include a useful commit
message. You provide positive feedback but request some details that would
be helpful to add to the commit message before merging.

Craft pull requests with care and empathy for the reviewer
PR descriptions are detailed and include screen shots when applicable
Reviewers can easily understand the context for the change from viewing the
PR and code changes, without having to click through multiple links to Trello
or related conversations elsewhere
PR descriptions include detailed manual testing steps
Irrelevant bits of the PR template have been removed

Accept constructive feedback gracefully and act upon it
When provided with constructive feedback, you don't respond defensively
If you disagree with the feedback, ask thoughtful questions until you can
come to a shared understanding with the reviewer, then implement requested
changes
Receive feedback that daily stand-ups are not sufficiently detailed, so spend
more time reviewing the planned and recent work to include more information
in the stand-up

Maintain documentation on the systems you work on, making it easy for
future engineers to interact with systems and code

Update the dev setup instructions to document any problems you encountered
in setting up your environment
Write good commit messages that explain why a change was made

Write clear tickets, issues and bug reports that contain the necessary amount of
detail to be picked up by other engineers

Add links to the pages that are affected by a bug
Write steps to reproduce an issue that you've found
Add screenshots to a ticket to help explain a display bug

Delivery

5

•
•

•

•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
•
•
•

Maintain focus on the most important task
Create tickets to capture non-trivial tech debt, rather than getting side-tracked
by things not needed to complete the current task

Get well-defined tasks from backlog to production (with support as-
needed). Tasks may be up to 1-2 weeks of work.

Turn a user story into a technical implementation in production
Raise blockers in timely way

Contribute openly to discussions, e.g. on Basecamp
Regularly communicate the status of work

Post a comment on Trello when moving a ticket from one column to another
Attach pull requests to Trello cards when ready

Ask for help or clarification on tasks when required
Seek guidance from other engineers, rather than answers

Participate in delivery process
Move tickets to Testing column when they are deployed and ready for testing
Write detailed daily stand-ups

Leadership
Act with integrity, honesty and accountability
Positively contribute to an inclusive team culture

Tactfully call out exclusive or alienating behaviours from others
Improve documentation to help new starters

Take ownership of your personal development
See some code that you don't understand, and research how it works
Proactively learn how to use a new tool/language feature
Read blog posts about technology
Attend meet-ups or conferences

Software Engineer II

Software Engineer II indicates an engineering level with some experience, but
engineers at this level should be provided with ongoing support and mentorship
from more senior team members. Level 2 Software Engineers write production-
quality code to solve problems and build enhancements to the new Rail Europe
B2C/formerly Loco2 application, and they are expected to exhibit more
independence in tackling challenging pieces of work, looking to their colleagues for

6

•
•

•
•

•
•

•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•
•
•

•
•
•

•

guidance and effectively acting upon feedback, whilst contributing to discussions
and conversations. Software Engineer II may also begin to specialise in a particular
area of the codebase or technological principle.

Skills
Technical

Use code to make something (up to 2-3 weeks' work, or 13 story points)
Take a feature from the prioritised backlog and write the code and tests for
that feature
Breaks work into smaller discrete chunks for easier-to-review pull requests

Ensure your changes are well-tested and don't introduce regressions
Write automated unit and end-to-end tests for features and bug fixes
Develop a testing plan and share on the Trello card so product owners and QA
know how to test your changes, and in which environment to test them
Use feature flippers to test on production when possible

Reuse existing code
Use Ruby Money module for currency-related work
Use an appropriate open-source library when advisable

Maintain the security of the systems you work on
Fix vulnerabilities raised by GitHub security alerts
Conduct investigation into PCI DSS compliance scan results

Regularly and independently debug and fix bugs in your own code
Fix broken tests caused by changes in their code

Get involved in fixing live incidents in production
Responds to alerts for services in production by investigating errors and
beginning remedial action

Improve our continuous delivery or build pipelines for automation
Make config changes in Travis CI
Debug problems with Percy configuration or screenshots
Add or optimise steps to the CI build

Use and improve monitoring
Add a new metrics to a space in Librato
Use Papertrail logs to track down a bug in production

Make pragmatic decisions about technical trade-offs within your own code
Weighs up the benefits of making code more abstract vs specific
Reasons about making an API call from the client or from the server

Communication
Create, maintain and enhance documentation for the systems you work on,
making it easy for future engineers to interact with systems and code

7

•

•

•
•

•
•

•
•
•

•

•
•

•
•

•

•

•
•

•
•

•
•

Create wiki articles to thoroughly document new features, linking to the
relevant Basecamp threads, important Trello cards, and major PRs
Find some documentation you are reading is out of date so open a Trello card
to find the appropriate person to improve it

Present your work clearly to a product owner or tech lead
Add an update on Basecamp about a new feature including a video demoing
the feature
Explain your approach to a technical problem to a tech lead

Raise blockers in the appropriate place (to your mentor, in #tech or other
relevant Slack channel) promptly

Delivery
Lead on getting tasks (up to 13 SPs) from backlog to production

Turn a well-defined user story into a technical implementation in production
Investigate a vague bug report and successfully resolve the issue

Effectively collaborate with team members from other disciplines to deliver
features

Work with your product owner to discuss some edge-cases in a feature
Help to debug a cross-browser issue with a tester

Regularly contribute openly to discussions and encourage others to do so too
Manage, prioritise and communicate your own workload

Use Trello, daily stand-ups, 1:1s and other opportunities to communicate
about blockers, current status, and get support as-needed

Understand our product in a general sense: how it works, what it can do, what
features exist

Leadership
Know who your project's stakeholders are
Share knowledge with peers informally

Come back from a conference and share your learnings with others
Influence a community of practice

Answer questions in the #tech Slack channel
Share relevant content/links in Interesting Articles thread on Basecamp

Intermediate Software Engineer I

8

•

•

•

•
•

•
•

•
•
•

•
•

•

•

•
•

•
•

•
•

An Intermediate Software Engineer writes production-quality code to solve
problems and build features in the new Rail Europe B2C/formerly Loco2
application, providing support to more junior team members and reaching out to
more senior teammates for guidance as needed. While Intermediate Software
Engineers may not know how to approach every task they are assigned, they can
independently investigate issues and are self-directed in their learning, able to
discover what they don't know and pursue appropriate training and practice to
enhance their skills.

Skills
Technical

Implement appropriate observability and monitoring when building a
solution

When adding a new dependency to a system, add a healthcheck to monitor
the dependency's state
Add logging that is well-structured and captures useful information about the
state of a system

Evaluate third-party software to use in projects
Can choose between similar Ruby libraries evaluating code quality, ease of
integration, future maintenance, and security concerns
May be involved in evaluating paid-for third party supplier code

Understand the security attack vectors for your area of technology and
mitigate against them

Sanitise user input to mitigate against XSS attacks
Protect public API endpoints
Articulate security risks/benefits when evaluating third-party software

Make pragmatic decisions about technical trade-offs within their project
Know when to stop work on a feature that has fulfilled the requirements vs.
spending an extra week on making it perfect but delivering little additional
value
Manage technical debt, understand consequences of technical debt vs the
cost of fixing it and act accordingly
Can explain when something is worth refactoring even when it will impact the
speed of delivery

Deliver high-quality code and solutions for tasks up to 1-2 months
Refactor solutions to improve clarity and maintainability

Regularly and independently debug and fix bugs regardless of origin
Pick up and debug an urgent issue that comes in to the team, despite having
not written the code originally

Choose the appropriate tool, technology or software for a task
If starting a new project, use tools already understood by the team unless

9

•
•

•

•

•

•
•

•
•

•
•
•

•
•
•
•

•
•

•
•

•
•

•
•

•

•

there is an agreed good reason to change

Communication
Review pull requests and give actionable, empathetic feedback

PR approvals point out what works well in the code or ask detailed questions
about what's not easily understandable
The work is good but you spot a place where a potential corner case is
unhandled. You suggest an enhancement to improve the reliability of the code.

Communicate technical concepts clearly and adapt that communication to
the audience

Explain your work in stand-ups knowing which technical details to leave out to
make the message meaningful to everyone in the room
Teach more junior engineers

Facilitate productive discussions with clear outcomes
Run meetings with clear agendas and outcomes
Obtain wide feedback on technical proposals (e.g., via a Basecamp
discussion) and take ownership of seeing it through

Contribute to hiring process
Refer engineers for suitable open roles
Provide constructive feedback about job specs for open roles when they're
posted

Delivery
Use user research or data to inform decisions

Attend customer-based user research for a feature being worked on
Set up a testing session with peers for a new bit of tooling
Find a common pain point among teammates and proposes/builds a solution
for it

Break down large complex technical proposals into discrete tasks
Create the user stories for an epic or mini-epic with a PO

Communicate work's status upwards to a Tech Lead or manager
Move blockers to enable more junior engineers to work

Review pull requests in accordance with our guidelines
Suggest someone to talk to, e.g., “[X] knows the most about [technology Y],
you could ask them”

Improve delivery process and encourages others to do the same
Champions technical issues that affect delivery such as release cycles,
dealing with tech debt and bug fixes
Encourages other engineers to participate effectively in stand-ups and
retrospectives

Build expertise and knowledge in a particular area of our product or

10

•

•

•

•
•
•
•
•

•
•
•

•

•

•
•

business
Understand how station availability impacts our inventory, and how the
stations gem works
Learn to use the various features of our CMS, and support the marketing team
in using it
Understand the booking flow and features of the mobile application, including
native apps

Leadership
Contribute to the personal development of more junior people

Is a designated buddy to a new starter
Regularly meets up with more junior peers to provide guidance
Pair with more junior team members
Write blog posts to share knowledge

Intermediate Software Engineer II

Intermediate Software Engineer II writes high-quality production code to solve
problems and build features in the new Rail Europe B2C/formerly Loco2
application. In addition to possessing the skills expected of an Intermediate
Software Engineer I, Intermediate Software Engineer II possesses a sophisticated
understanding of their role within the larger organisation and contributes positively
to the overall impact of the team. The code they write is secure and performative,
and they take ownership of features built to ensure any newly introduced bugs are
quickly resolved without impacting their teammates unduly.

Skills
Technical

Build products ensuring you take adequate steps to protect sensitive data
Sensitive data is masked in logs
Data is retained only for as long as it is needed

Implement appropriate observability and monitoring when building a
solution

Build a Librato dashboard that visualises normal and abnormal operation of
a system

Lead on fixing live incidents in production
Take proactive action when an incident is reported on a system you support

11

•

•
•
•

•

•

•
•

•

•
•

•

•
•

•
•
•

•
•

•

and resolves it satisfactorily
Respond to critical issues raised in #panic taking the initiative to fix them
and report back

Encourage others to deliver high-quality code and solutions
Implement tooling to enforce high standards
Review pull requests fairly & critically in such a way that team members
produce better code

Build software or services considering resilience, performance and failure
modes

Combine multiple data sources in a feature, caching, polling, etc., as
appropriate to cope with problems in downstream services
Add healthchecks to a system that detect different ways in which it can fail
Design and implement a build pipeline

Consider the technical direction of your team or the wider organisation when
coming up with technical solutions

Understand how your work feeds into the organisation's overall tech strategy
Can articulate and justify the total cost of ownership of your technical
solutions

Communication
Communicate technical concepts clearly and adapt that communication to
the audience

Create diagrams to document how the different parts of systems interact
Present your own work clearly to stakeholders

Contribute to hiring process
Participate in hiring panels or technical interviews
Review tech tests

Delivery
Scopes and prioritises technical work for the team (usually with others)

You add detailed information and suggested starting points to a task in the
backlog so it's ready for a new starter to pick up
You prioritise work in your area or your project and suggest a few tickets to the
technical leads for prioritisation

Senior Software Engineer I

12

•
•

•

•
•

•

•
•

•

•

•
•

•
•

•
•
•
•
•
•

A Senior Software Engineer writes high-quality production code to solve problems
and build features in the new Rail Europe B2C/formerly Loco2 application. The code
they write is secure and performative, and they take responsibility for upholding the
overall quality of the codebase and the product. They are comfortable with
ambiguity, able to work with stakeholders to clarify vague requirements in order to
solve problems, and act as a leader and mentor to more junior team members.

Skills
Technical

Make pragmatic decisions about technical trade-offs beyond your project
Can articulate why the overhead of using a third-party system is worth it for
your project
Decide to invest time in building a dashboard for stakeholders to reduce the
number of queries they make to the team

Debug and fix complex bugs efficiently
Investigate a drop in organic traffic from Google, make educated
investigations into various aspects of the end-to-end system, consulting other
domain experts along the way and keeping stakeholders aware of progress
Investigate a discrepancy in reported ad traffic. Work with the marketing team
to narrow down scope of problem. Use technical knowledge to consult logs for
various systems. Identify a fix and implement it.

Find technical problems outside of your area and identify ways to improve them
Notice a lot of requests coming in from Customer Support for an admin task
that could be automated. Automate the task and work with the Customer
Support team on how to use the new tool
While debugging an issue, trace the bug back to a shared library. Create a
patch for the bug and makes sure it is released.
Spot another team could benefit from using a security feature and help them
implement it

Translate difficult business requirements into technical designs
Have a deep understanding of, and help others understand, a particular
technology or product

Respond to questions on Slack about a particular technology or product
Provide thoughtful and in-depth feedback on Pull Requests that fall into your
area of expertise

Write code that serves as a definitive example for new engineers
Write complex asynchronous and concurrent code
Build maintainable and flexible components and applications
Design new schemas comprising multiple tables
Implement complex asynchronous messaging flows
Co-ordinate complex deployments and database migrations

13

•
•

•
•
•
•

•

•

•

•

•

•
•

•

Implement distributed systems consisting of multiple interacting services
Produce technical designs that include a consideration of scalability

Communication
Present your team's work to others in the business

Write one-pagers to explain technical decisions to management
Write a blog post about an aspect of the team's work
Make sure new features are announced to interested parties in the
appropriate Basecamp thread

Delivery
Take a stakeholder problem, investigate to understand it and propose a
solution
Tackle complex cross-team technical issues, breaking them down into
smaller bits and addressing them

Manage the roll-out of a new shared tool to multiple code repositories,
identifying what work needs to be done, and finding teams to do the work
Find a bug in a library that affects multiple teams, fixethe bug and work with
teams to make sure everybody is able to upgrade
Find a manual process slowing down multiple teams and automate it

Leadership
Show technical leadership

Lead on large features or stories

Senior Software Engineer II

A Senior Software Engineer II writes high-quality production code to solve
problems and build features in the new Rail Europe B2C/formerly Loco2
application. They exceed the responsibilities of Senior Software Engineer I by
demonstrating leadership and exemplifying our values, demonstrating a high level
of involvement and engagement within the organisation, and steering the overall
technical strategy in their area of expertise.

Skills
Technical

Shape the technical direction for the wider group or tech department

14

•
•

•
•
•
•
•
•

•
•

•

•

•
•

•

•

•

•

•

•
•
•
•

Contribute to technical strategy work
Successfully lead the group-wide adoption of a particular technology

Identify and fix security weaknesses
Identify and fix performance bottlenecks in applications
Explain all aspects of the web platform to new engineers
Implement services or libraries that require a deep level of domain knowledge
Put users first and can manage competing priorities effectively
Promote accessibility good practice and help other engineers to deepen
their accessibility knowledge

Demonstrate how to use screen readers to other developers
Improve our documentation with pointers for writing accessible code for other
developers
Take the initiative to report and document accessibility bugs that are currently
live in production

Communication
Ask why. Do not take truths for granted unless you understand exactly
where they are coming from (especially with regards to regulation,
compliance, etc)
Break down delivery and knowledge silos
Keep up-to-date with industry developments and feed specific technical and
non-functional recommendations back into the business
Proactively identify opportunities to improve company culture around coding
standards and non-functional requirements
Proactively give feedback 'upwards' and to people you interact with who are not
in your team

Delivery
Break down large projects into smaller iterative steps that each deliver
value
Can take a long-term vision (3-4 months) and define building blocks to get
there
Help Product Managers and Designers to understand and consider non-
functional requirements in the product development process

Leadership
Show technical leadership

Shape technical strategy through discussions with the wider organisation
Act as a technical lead on a project with other developers
Drive changes to engineering practices with well-reasoned arguments and a

15

•
•
•

•
•

•
•
•

•
•

•
•

•
•
•
•

•

'strong opinion, weakly held' mentality
Share knowledge with others internally

Give a Lunch & Learn talk
Add useful tips about development tools and workflows to the wiki or posts on
Slack
More informal knowledge sharing through mentorship

Actively foster an inclusive team culture
Celebrate good work publicly and encourage the team to do the same
Spot problems between team members and helps to resolve them
Models inclusive behaviour to the rest of the team

Find learning opportunities for others when reviewing their code and follow it up
I think this code could be improved by doing X, let's pair on it and I'll talk
through why X is good for this

Technical Lead

A Technical Lead leads development across a particular area of the Rail Europe B2C
or LocoHub products. They provide technical leadership, coaching, and mentoring
to promote knowledge sharing across their team, and take responsibility for the
team's overall impact. A Technical Lead's primary contribution may be writing code
to solve problems or designing systems to meet business needs, but they will also
guide the way in which their team works and uphold a high quality standard. Above
all, a Technical Lead has the autonomy to focus on complex problems and create
solutions, leveraging the resources of their own expertise as well as that of their
team to support business goals.

Skills
Technical

Anticipate, identify, and mitigate potential points of failure
Anticipate platform and project needs, technical debt and common issues
intuitively
Develop clear technical solutions from ambiguous requirements
Produce technical designs for large complex projects
Uncover and fix tricky bugs that have previously evaded detection
Demonstrate a deep level of knowledge in a specific area and/or understand
the entire architecture for a major part of the business
Serve as a technical authority on a technology or an area of the codebase

16

•
•
•

•

•
•
•

•

•

•

•
•
•

•

•

•
•

•
•

•
•

•
•

•

Review technical designs and pull requests for large complex projects
Encourage and support other engineers to achieve outstanding results
Create major contributions to our documentation, and create documents that
provide guidelines and best practices to other engineers
Work with technical and non-technical stakeholders to translate business
requirements into technical designs and implementations

Communication
Assist Delivery Manager in hiring process for new Engineers.

Act as an interviewer on an interview panel
Work to improve the quality of the interviews we conduct and the consistency
of the code and CV reviews we do

Help people in non-technical roles understand technical constraints/trade-
offs
Can clearly articulate the scaling and reliability limits of your area and
escalate awareness of these limits to the management team appropriately

Delivery
Are accountable for the delivery of the team (individually or jointly with
other people)

Work with the delivery manager and product manager to plan upcoming work
Groom backlog to make sure issues are ready to be picked up
Proactively unblock others in your team

Help prioritise and balance short-term and long-term investments, focusing
on high-impact, high-value work

Tackle technically challenging work while delegating effectively as-needed

Leadership
Help resolve disagreements healthily

Help the team navigate disagreements over the best way to do things. Get
agreement and buy-in from engineers on a solution to a problem
Encourage team members to speak freely in discussions
Encourage team members to treat each other empathetically

Shape the medium to long-term (6-12 months) priorities of your team
Find commonalities between small feature ideas in order to form them into
larger, coherent technical challenges for the team
Champion turning things off in order to have capacity to work on new things
Argue for and form a feature team to tackle a shared problem with other areas
of the business
Write a realistic roadmap in collaboration with a product owner and delivery

17

•

•

•

•

•

•
•

•

•

•
•

•

lead
Make judgements about when to diverge from the immediate goal to achieve
something else
Responsible for the reliability and maintainability of business-critical
systems

Take ownership of the on-call process, ensuring sufficient out-of-hours
coverage in the event of critical errors
Act as a first-tier responder in the event of a critical incident if the on-call
developer cannot be reached

Principal Software Engineer

A Principal Software Engineer leads development across a particular area of the
Rail Europe B2C application or infrastructure. They may do this primarily by writing
high-quality production code to solve problems and build features, but they also act
as a force multiplier for the rest of their team, using their deep expertise to
facilitate growth among their teammates and to maintain an exceptional level of
code and product quality. This is a non-managerial technical leadership role,
leading by example and shaping the product through strategic advising and direct
technical contributions.

Skills
Technical

Take responsibility for maintaining standards of excellence in code quality,
architecture, test coverage, and software design

Provide detailed, constructive feedback in code review on pull requests
Work with other engineers and testers to ensure complex or risky new features
are thoroughly tested and safely deployed

Regularly review and triage errors and alerts related to a specific area of the
application

Keep on top of Sentry errors, prioritising maintenance and bug fixes as-
needed to keep error rates down
Notice a common, recurring error and investigates the root cause to resolve it

Maintain awareness of current technologies and frameworks that may
support our goals and adopts them as-needed

Integrate React Hooks and other new framework features into the SPA once
they reach maturity

18

•
•
•
•
•
•
•
•
•
•
•
•
•

•

•
•

•
•

•

•
•

•
•

•

•

•

•

Solve the "hard problems" in a given area
Find effective technical solutions to larger, ambiguous problems
Lead large-scale technical infrastructure projects
Contribute to external technologies or libraries that we depend on
Develop clear technical solutions from ambiguous requirements
Uncover and fix tricky bugs that have previously evaded detection
Implement security improvements that impact multiple services
Implement performance improvements that impact multiple services
Demonstrate a deep level of knowledge in a specific area
Serve as a technical authority on a technology or an area of the codebase
Create dashboards that broadly impact all engineers
Produce clear technical designs for large complex projects
Build systems that serve as definitive examples for new engineers

Communication
Help other people develop themselves and regularly give insightful, useful
feedback to those around you
Talk to non-technical stakeholders at an appropriate level of abstraction
Proactively share knowledge internally

Delivery
Craft proposals for technical solutions to business problems

Writes a proposal for how we can approach data migration for orders placed
on CWS to be accessed on new B2C platform
Elicits input from the wider tech team and consolidates opinions into a formal
recommendation for the management team to review

&&Research and identify problems that may appear in the mid-term future**
Develop strategies and prototypes to mitigate those potential problems

Leadership
Identify knowledge gaps within the team and gives training to address gaps

Notice that people are not using Git as powerfully as they could so deliver a
workshop for engineers on how to use Git's more advanced features.
Notice you are the only person that understands a particular area of the
codebase, so write and deliver a talk at a team meeting about that area.

Work with relevant Engineering Managers to help other engineers perform
and grow
Foster effective collaboration in multi-disciplinary squads (backend, mobile,
data, design, web)
Delegate technical decisions with low risk and high reversibility

19

• Own technical decisions with high risk and low reversibility

